BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011
Môn: TOÁN; Khối: D
Thời gian làm bài: 180 phút, không kể thời gian phát đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (2,0 điểm) Cho hàm số
2 1
1
x
y
x
+
= ⋅
+
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
2. Tìm k để đường thẳng y = kx + 2k + 1 cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho khoảng
cách từ A và B đến trục hoành bằng nhau.
Câu II (2,0 điểm)
1. Giải phương trình sin 2 2cos sin 1 0.
tan 3
x xx
x
+ −−
=
+
2. Giải phương trình ( ) ( ) 2
2 1
2
log 8 log 1 1 2 0 ( ). − + ++ − −= ∈ x xx x \
Câu III (1,0 điểm) Tính tích phân
4
0
4 1 d .
2 12
x
I x
x
−
=
+ + ∫
Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BA = 3a, BC = 4a;
mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết SB = 2 3 a và Tính thể tích
khối chóp S.ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a.
SBCn=30 .D
Câu V (1,0 điểm) Tìm m để hệ phương trình sau có nghiệm:
3 2
2
2 ( 2)
( , ).
1 2
x y x xy m
x y
x xy m
⎧⎪
−+ + = ⎨
∈
⎪⎩
+ − =−
\
PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VI.a (2,0 điểm)
1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(– 4; 1), trọng tâm G(1; 1) và đường
thẳng chứa phân giác trong của góc A có phương trình x – y – 1 = 0. Tìm tọa độ các đỉnh A và C.
2. Trong không gian với hệ toạ độ Oxyz, cho điểm A(1; 2; 3) và đường thẳng d:
1 3
21 2
x yz + −
= =
−
⋅
Viết phương trình đường thẳng ∆ đi qua điểm A, vuông góc với đường thẳng d và cắt trục Ox.
Câu VII.a (1,0 điểm) Tìm số phức z, biết: z – (2 + 3i)z = 1 – 9i.
B. Theo chương trình Nâng cao
Câu VI.b (2,0 điểm)
1. Trong mặt phẳng toạ độ Oxy, cho điểm A(1; 0) và đường tròn (C): x
2
+ y
2
– 2x + 4y – 5 = 0. Viết
phương trình đường thẳng ∆ cắt (C) tại hai điểm M và N sao cho tam giác AMN vuông cân tại A.
2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
1 3
:
2 4 1
x− −y
Δ == z
và mặt phẳng
Viết phương trình mặt cầu có tâm thuộc đường thẳng ∆, bán kính bằng 1 và
tiếp xúc với mặt phẳng (P).
( ) : 2 2 0. P xy z −+ =
Câu VII.b (1,0 điểm) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số
2
2 3
1
x x
y
x
+ +
=
+
3
trên
đoạn [0; 2].
----------- Hết ----------
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:.............................................; Số báo danh:................................
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2011
Môn: TOÁN; Khối: D
Thời gian làm bài: 180 phút, không kể thời gian phát đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (2,0 điểm) Cho hàm số
2 1
1
x
y
x
+
= ⋅
+
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
2. Tìm k để đường thẳng y = kx + 2k + 1 cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho khoảng
cách từ A và B đến trục hoành bằng nhau.
Câu II (2,0 điểm)
1. Giải phương trình sin 2 2cos sin 1 0.
tan 3
x xx
x
+ −−
=
+
2. Giải phương trình ( ) ( ) 2
2 1
2
log 8 log 1 1 2 0 ( ). − + ++ − −= ∈ x xx x \
Câu III (1,0 điểm) Tính tích phân
4
0
4 1 d .
2 12
x
I x
x
−
=
+ + ∫
Câu IV (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BA = 3a, BC = 4a;
mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết SB = 2 3 a và Tính thể tích
khối chóp S.ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a.
SBCn=30 .D
Câu V (1,0 điểm) Tìm m để hệ phương trình sau có nghiệm:
3 2
2
2 ( 2)
( , ).
1 2
x y x xy m
x y
x xy m
⎧⎪
−+ + = ⎨
∈
⎪⎩
+ − =−
\
PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VI.a (2,0 điểm)
1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(– 4; 1), trọng tâm G(1; 1) và đường
thẳng chứa phân giác trong của góc A có phương trình x – y – 1 = 0. Tìm tọa độ các đỉnh A và C.
2. Trong không gian với hệ toạ độ Oxyz, cho điểm A(1; 2; 3) và đường thẳng d:
1 3
21 2
x yz + −
= =
−
⋅
Viết phương trình đường thẳng ∆ đi qua điểm A, vuông góc với đường thẳng d và cắt trục Ox.
Câu VII.a (1,0 điểm) Tìm số phức z, biết: z – (2 + 3i)z = 1 – 9i.
B. Theo chương trình Nâng cao
Câu VI.b (2,0 điểm)
1. Trong mặt phẳng toạ độ Oxy, cho điểm A(1; 0) và đường tròn (C): x
2
+ y
2
– 2x + 4y – 5 = 0. Viết
phương trình đường thẳng ∆ cắt (C) tại hai điểm M và N sao cho tam giác AMN vuông cân tại A.
2. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
1 3
:
2 4 1
x− −y
Δ == z
và mặt phẳng
Viết phương trình mặt cầu có tâm thuộc đường thẳng ∆, bán kính bằng 1 và
tiếp xúc với mặt phẳng (P).
( ) : 2 2 0. P xy z −+ =
Câu VII.b (1,0 điểm) Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số
2
2 3
1
x x
y
x
+ +
=
+
3
trên
đoạn [0; 2].
----------- Hết ----------
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:.............................................; Số báo danh:................................